Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Mol Pharm ; 20(1): 147-158, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36367432

RESUMO

It is well known that reduced gastric acidity, for example with concomitant administration of acid reducing agents, can result in variable pharmacokinetics and decreased absorption of weakly basic drugs. It is important to identify the risk of reduced and variable absorption early in development, so that product design options to address the risk can be considered. This article describes the utilization of in vitro and in silico tools to predict the effect of gastric pH, as well as the impact of adding pH modifiers, in mitigating the effect of acid reducing agents on weak base drugs' dissolution and absorption. Palbociclib, a weakly basic drug, was evaluated in low and high gastric pH conditions in a multicompartmental dissolution apparatus referred to as a gastrointestinal simulator (GIS). The GIS permits the testing of pharmaceutical products in a way that better assesses dissolution under physiologically relevant conditions of pH, buffer concentration, formulation additives, and physiological variations including GI pH, buffer concentrations, secretions, stomach emptying rate, residence time in the GI, and aqueous luminal volume. To predict drug dissolution in the GIS, a hierarchical mass transport model was used and validated using in vitro experimental data. Dissolution results were then compared to observed human clinical plasma data with and without proton pump inhibitors using a GastroPlus absorption model to predict palbociclib plasma profiles and pharmacokinetic parameters. The results showed that the in silico model successfully predicted palbociclib dissolution in the GIS under low and high gastric pH conditions with and without pH modifiers. Furthermore, the GIS data coupled with the in silico tools anticipated (1) the reduced palbociclib exposure due to proton pump inhibitor coadministration and (2) the mitigating effect of a pH-modifying agent. This study provides tools to help in the development of orally administered formulations to overcome the effect of elevated gastric pH, especially when formulating with pH modifiers.


Assuntos
Absorção Intestinal , Substâncias Redutoras , Humanos , Substâncias Redutoras/farmacologia , Solubilidade , Concentração de Íons de Hidrogênio , Administração Oral , Preparações Farmacêuticas , Simulação por Computador , Absorção Intestinal/fisiologia , Modelos Biológicos
2.
Mol Pharm ; 18(9): 3326-3341, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34428047

RESUMO

Orally dosed drugs must dissolve in the gastrointestinal (GI) tract before being absorbed through the epithelial cell membrane. In vivo drug dissolution depends on the GI tract's physiological conditions such as pH, residence time, luminal buffers, intestinal motility, and transit and drug properties under fed and fasting conditions (Paixão, P. et al. Mol. Pharm.2018 and Bermejo, et al. M. Mol. Pharm.2018). The dissolution of an ionizable drug may benefit from manipulating in vivo variables such as the environmental pH using pH-modifying agents incorporated into the dosage form. A successful example is the use of such agents for dissolution enhancement of BCS class IIb (high-permeability, low-solubility, and weak base) drugs under high gastric pH due to the disease conditions or by co-administration of acid-reducing agents (i.e., proton pump inhibitors, H2-antagonists, and antacids). This study provides a rational approach for selecting pH modifiers to improve monobasic and dibasic drug compounds' dissolution rate and extent under high-gastric pH dissolution conditions, since the oral absorption of BCS class II drugs can be limited by either the solubility or the dissolution rate depending on the initial dose number. Betaine chloride, fumaric acid, and tartaric acid are examples of promising pH modifiers that can be included in oral dosage forms to enhance the rate and extent of monobasic and dibasic drug formulations. However, selection of a suitable pH modifier is dependent on the drug properties (e.g., solubility and pKa) and its interplay with the pH modifier pKa or pKas. As an example of this complex interaction, for basic drugs with high pKa and intrinsic solubility values and large doses, a polyprotic pH modifier can be expected to outperform a monoacid pH modifier. We have developed a hierarchical mass transport model to predict drug dissolution of formulations under varying pH conditions including high gastric pH. This model considers the effect of physical and chemical properties of the drug and pH modifiers such as pKa, solubility, and particle size distribution. This model also considers the impact of physiological conditions such as stomach emptying rate, stomach acid and buffer secretion, residence time in the GI tract, and aqueous luminal volume on drug dissolution. The predictions from this model are directly applicable to in vitro multi-compartment dissolution vessels and are validated by in vitro experiments in the gastrointestinal simulator. This model's predictions can serve as a potential data source to predict plasma concentrations for formulations containing pH modifiers administered under the high-gastric pH conditions. This analysis provides an improved formulation design procedure using pH modifiers by minimizing the experimental iterations under both in vitro and in vivo conditions.


Assuntos
Excipientes/farmacologia , Absorção Gastrointestinal/efeitos dos fármacos , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Modelos Biológicos , Administração Oral , Betaína/farmacologia , Disponibilidade Biológica , Química Farmacêutica , Simulação por Computador , Desenho de Fármacos , Liberação Controlada de Fármacos , Fumaratos/farmacologia , Humanos , Solubilidade , Tartaratos/farmacologia
3.
Mol Pharm ; 17(11): 4286-4301, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32815731

RESUMO

Two of the main questions regarding cocrystal selection and formulation development are whether the will be stable and how fast can it dissolve the drug dose. Dissolving the drug dose may require cocrystals with a high solubility advantage over drug (SA = SCC/SD), but these may have limited potential to sustain drug supersaturation. Thus, we propose a twofold approach to mitigate the risk of drug precipitation by optimizing thermodynamic (SA) and kinetic factors (nucleation inhibitors). This risk can be evaluated by considering the cocrystal SA and drug dose/solubility ratio (D0D = Cdose/SD), which in tandem represent the maximum theoretical supersaturation that a cocrystal may generate, the driving force for drug precipitation, and the potential for dose-/solubility-limited absorption. cocrystals with SA and D0D values above critical supersaturation are prone to rapid precipitation, often negating their utility as a solubility enhancement tool. This work presents a mechanistic approach to controlling the dissolution-supersaturation-precipitation behavior of cocrystal systems, whereby relationships between SA, D0D, and the drug-solubilizing power of surfactants (SPD = SD,T/SD,aq) are used to fine-tune cocrystal-inherent supersaturation by rational additive selection. Experimental results with danazol-vanillin cocrystal demonstrate how SA, D0D, and SPD are key thermodynamic parameters to understanding the kinetic cocrystal behavior and how the risks of cocrystal development may be mitigated through the mechanistic formulation design.


Assuntos
Benzaldeídos/química , Precipitação Química/efeitos dos fármacos , Danazol/química , Composição de Medicamentos/métodos , Sistemas de Liberação de Medicamentos/métodos , Tensoativos/química , Benzaldeídos/farmacologia , Cristalização , Liberação Controlada de Fármacos/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Cinética , Solubilidade/efeitos dos fármacos , Tensoativos/farmacologia , Temperatura
4.
Eur J Pharm Sci ; 152: 105422, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32531350

RESUMO

Cocrystals that are more soluble than the constituent drug, generate supersaturation levels during dissolution and are predisposed to conversion to the less soluble drug. Drug release studies during cocrystal dissolution generally compare several cocrystals and their crystal structures. However, the influence of drug dose and solubility in different dissolution media has been scarcely reported. The present study aims to investigate how drug dose/solubility ratio (Do=Cdose/Sdrug), cocrystal solubility advantage over drug (SA=Scocrystal/Sdrug), and dissolution media affect cocrystal dissolution-drug supersaturation and precipitation (DSP) behavior. SA and Ksp values of 1:1 cocrystals of meloxicam-salicylic acid (MLX-SLC) and meloxicam-maleic acid (MLX-MLE) were determined at cocrystal/drug eutectic points. Results demonstrate that both cocrystals enhance SA by orders of magnitude (20 to 100 times for the SLC and over 300 times for the MLE cocrystal) in the pH range of 1.6 to 6.5. It is shown that during dissolution, cocrystals regulate the interfacial pH (pHint) to 1.6 for MLX-MLE and 4.5 for MLX-SLC, therefore diminishing the cocrystal dissolution rate dependence on bulk pH. Do values ranged from 2 (pH 6.5) to 410 (pH 1.6) and were mostly determined by the drug solubility dependence on pH. Drug release profiles show that maximum supersaturation (σmax=Cmax/Sdrug)and AUC increased with increasing Do as pH decreased. When Do>>SA, the cocrystal solubility is not sufficient to dissolve the dose so that a dissolution-precipitation quasi-equilibrium state is able to sustain supersaturation for the extent of the experiment (24 h). When Do<

Assuntos
Solubilidade , Cristalização , Liberação Controlada de Fármacos , Concentração de Íons de Hidrogênio , Meloxicam
5.
Mol Pharm ; 16(9): 3887-3895, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31318567

RESUMO

Cocrystals are often more soluble than needed and pose unnecessary risks for precipitation of less soluble forms of the drug during processing and dissolution. Such conversions lead to erratic cocrystal behavior and nullify the cocrystal solubility advantage over parent drug (SA = Scocrystal/Sdrug). This work demonstrates a quantitative method for additive selection to control cocrystal disproportionation based on cocrystal solubility advantage (SA) diagrams. The tunability of cocrystal SA is dependent on the selective drug-solubilizing power of surfactants (SPdrug = (ST/Saq)drug). This cocrystal property is used to generate SA-SP diagrams that facilitate surfactant selection and provide a framework for evaluating how SA influences drug concentration-time profiles associated with cocrystal dissolution, drug supersaturation, and precipitation (DSP). Experimental results with indomethacin-saccharin cocrystal and surfactants (sodium lauryl sulfate, Brij, and Myrj) demonstrate the log-linear relationship characteristic of SA-SP diagrams and the dependence of σmax and dissolution area under the curve (AUC) on SA with characteristic maxima at a threshold supersaturation where drug nucleation occurs. This approach is expected to streamline cocrystal formulation as it facilitates additive selection by considering the interplay between thermodynamic (SA) and kinetic (DSP) processes.


Assuntos
Precipitação Química , Liberação Controlada de Fármacos , Indometacina/química , Óleos de Plantas/química , Polietilenoglicóis/química , Sacarina/química , Dodecilsulfato de Sódio/química , Tensoativos/química , Área Sob a Curva , Cristalização , Concentração de Íons de Hidrogênio , Cinética , Concentração Osmolar , Solubilidade , Temperatura
6.
Pharmaceutics ; 11(3)2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30884755

RESUMO

The present work aimed to explain the differences in oral performance in fasted humans who were categorized into groups based on the three different drug product formulations of dexketoprofen trometamol (DKT) salt-Using a combination of in vitro techniques and pharmacokinetic analysis. The non-bioequivalence (non-BE) tablet group achieved higher plasma Cmax and area under the curve (AUC) than the reference and BE tablets groups, with only one difference in tablet composition, which was the presence of calcium monohydrogen phosphate, an alkalinizing excipient, in the tablet core of the non-BE formulation. Concentration profiles determined using a gastrointestinal simulator (GIS) apparatus designed with 0.01 N hydrochloric acid and 34 mM sodium chloride as the gastric medium and fasted state simulated intestinal fluids (FaSSIF-v1) as the intestinal medium showed a faster rate and a higher extent of dissolution of the non-BE product compared to the BE and reference products. These in vitro profiles mirrored the fraction doses absorbed in vivo obtained from deconvoluted plasma concentration⁻time profiles. However, when sodium chloride was not included in the gastric medium and phosphate buffer without bile salts and phospholipids were used as the intestinal medium, the three products exhibited nearly identical concentration profiles. Microscopic examination of DKT salt dissolution in the gastric medium containing sodium chloride identified that when calcium phosphate was present, the DKT dissolved without conversion to the less soluble free acid, which was consistent with the higher drug exposure of the non-BE formulation. In the absence of calcium phosphate, however, dexketoprofen trometamol salt dissolution began with a nano-phase formation that grew to a liquid⁻liquid phase separation (LLPS) and formed the less soluble free acid crystals. This phenomenon was dependent on the salt/excipient concentrations and the presence of free acid crystals in the salt phase. This work demonstrated the importance of excipients and purity of salt phase on the evolution and rate of salt disproportionation pathways. Moreover, the presented data clearly showed the usefulness of the GIS apparatus as a discriminating tool that could highlight the differences in formulation behavior when utilizing physiologically-relevant media and experimental conditions in combination with microscopy imaging.

7.
Mol Pharm ; 15(12): 5454-5467, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30372084

RESUMO

The goal of this project was to explore and to statistically evaluate the responsible gastrointestinal (GI) factors that are significant factors in explaining the systemic exposure of ibuprofen, between and within human subjects. In a previous study, we determined the solution and total concentrations of ibuprofen as a function of time in aspirated GI fluids, after oral administration of an 800 mg IR tablet (reference standard) of ibuprofen to 20 healthy volunteers in fasted state conditions. In addition, we determined luminal pH and motility pressure recordings that were simultaneously monitored along the GI tract. Blood samples were taken to determine ibuprofen plasma levels. In this work, an in-depth statistical and pharmacokinetic analysis was performed to explain which underlying GI variables are determining the systemic concentrations of ibuprofen between (inter-) and within (intra-) subjects. In addition, the obtained plasma profiles were deconvoluted to link the fraction absorbed with the fraction dissolved. Multiple linear regressions were performed to explain and quantitatively express the impact of underlying GI physiology on systemic exposure of the drug (in terms of plasma Cmax/AUC and plasma Tmax). The exploratory analysis of the correlation between plasma Cmax/AUC and the time to the first phase III contractions postdose (TMMC-III) explains ∼40% of the variability in plasma Cmax for all fasted state subjects. We have experimentally shown that the in vivo intestinal dissolution of ibuprofen is dependent upon physiological variables like, in this case, pH and postdose phase III contractions. For the first time, this work presents a thorough statistical analysis explaining how the GI behavior of an ionized drug can explain the systemic exposure of the drug based on the individual profiles of participating subjects. This creates a scientifically based and rational framework that emphasizes the importance of including pH and motility in a predictive in vivo dissolution methodology to forecast the in vivo performance of a drug product. Moreover, as no extensive first-pass metabolism is considered for ibuprofen, this study demonstrates how intraluminal drug behavior is reflecting the systemic exposure of a drug.


Assuntos
Liberação Controlada de Fármacos , Jejum/fisiologia , Absorção Gastrointestinal/fisiologia , Trato Gastrointestinal/fisiologia , Ibuprofeno/farmacocinética , Administração Oral , Adulto , Área Sob a Curva , Disponibilidade Biológica , Variação Biológica Individual , Variação Biológica da População/fisiologia , Conjuntos de Dados como Assunto , Feminino , Voluntários Saudáveis , Humanos , Concentração de Íons de Hidrogênio , Ibuprofeno/administração & dosagem , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Solubilidade , Comprimidos , Adulto Jovem
8.
Eur J Pharm Sci ; 115: 258-269, 2018 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-29378253

RESUMO

Supersaturating drug delivery systems (SDDS) have been put forward in the recent decades in order to circumvent the issue of low aqueous solubility. Prior to the start of clinical trials, these enabling formulations should be adequately explored in in vitro/in silico studies in order to understand their in vivo performance and to select the most appropriate and effective formulation in terms of oral bioavailability and therapeutic outcome. The purpose of this work was to evaluate the in vivo performance of four different oral formulations of posaconazole (categorized as a biopharmaceutics classification system (BCS) class 2b compound) based on the in vitro concentrations in the gastrointestinal simulator (GIS), coupled with an in silico pharmacokinetic model to predict their systemic profiles. Recently published intraluminal and systemic concentrations of posaconazole for these formulations served as a reference to validate the in vitro and in silico results. Additionally, the morphology of the formed precipitate of posaconazole was visualized and characterized by optical microscopy studies and thermal analysis. This multidisciplinary work demonstrates an in vitro-in silico-in vivo approach that provides a scientific basis for screening SDDS by a user-friendly formulation predictive dissolution (fPD) device in order to rank these formulations towards their in vivo performance.


Assuntos
Trato Gastrointestinal/metabolismo , Triazóis/química , Triazóis/metabolismo , Administração Oral , Disponibilidade Biológica , Biofarmácia/métodos , Química Farmacêutica/métodos , Simulação por Computador , Sistemas de Liberação de Medicamentos/métodos , Absorção Intestinal/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos , Solubilidade/efeitos dos fármacos
9.
Eur J Drug Metab Pharmacokinet ; 42(1): 135-141, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26846485

RESUMO

BACKGROUND AND OBJECTIVES: Although lipid-based drug delivery systems have gained much importance in recent years due to their ability to improve the solubility and bioavailability of poorly soluble drugs, compartmental pharmacokinetic analyses have not been extensively explored. The oral pharmacokinetics of commercial liquid formulation and a developed semisolid system containing saquinavir mesylate (SQVM) were compared in Beagle dogs. A compartmental analysis after intravenous bolus administration of this drug (1 mg/kg) was also performed. METHOD: Pharmacokinetic profiles were analyzed using both non-compartmental and compartmental approaches. Plasma concentration of the drug was determined by high-performance liquid chromatography/tandem mass spectrometry (LC/MS/MS). RESULTS: The disposition curve of SQVM given intravenously was better described by a three-compartment model. In contrast, plasma profiles obtained following the oral administration were fitted to a two-compartment model with lag time due to the fact that the distribution phase was masked by the absorption phase in these formulations. CONCLUSION: The proposed semisolid lipid system was found to be a promising formulation for commercial purposes given the similarity of SQVM absorption rate to that from the commercial liquid formulation.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Saquinavir/administração & dosagem , Saquinavir/farmacocinética , Administração Intravenosa , Administração Oral , Animais , Disponibilidade Biológica , Cães , Emulsões , Lipídeos/química , Lipídeos/farmacocinética , Masculino , Modelos Biológicos , Saquinavir/sangue , Saquinavir/química
10.
Adv Drug Deliv Rev ; 101: 143-166, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27137109

RESUMO

Besides enhancing aqueous solubilities, cocrystals have the ability to fine-tune solubility advantage over drug, supersaturation index, and bioavailability. This review presents important facts about cocrystals that set them apart from other solid-state forms of drugs, and a quantitative set of rules for the selection of additives and solution/formulation conditions that predict cocrystal solubility, supersaturation index, and transition points. Cocrystal eutectic constants are shown to be the most important cocrystal property that can be measured once a cocrystal is discovered, and simple relationships are presented that allow for prediction of cocrystal behavior as a function of pH and drug solubilizing agents. Cocrystal eutectic constant is a stability or supersatuation index that: (a) reflects how close or far from equilibrium a cocrystal is, (b) establishes transition points, and (c) provides a quantitative scale of cocrystal true solubility changes over drug. The benefit of this strategy is that a single measurement, that requires little material and time, provides a principled basis to tailor cocrystal supersaturation index by the rational selection of cocrystal formulation, dissolution, and processing conditions.


Assuntos
Preparações Farmacêuticas/química , Preparações Farmacêuticas/metabolismo , Disponibilidade Biológica , Cristalização , Concentração de Íons de Hidrogênio , Solubilidade
11.
Behav Pharmacol ; 27(4): 384-92, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26703367

RESUMO

Ilex paraguariensis St. Hilaire (Aquifoliaceae) is a typical plant from South America. Preclinical studies have reported the effect of I. paraguariensis-based preparations on different alterations in the brain. This study aimed to examine the antidepressant-like and neuroprotective effects of I. paraguariensis hydroalcoholic extract (IpHE). The role of the N-methyl-D-aspartate receptor and the L-arginine-nitric oxide pathway in the IpHE antidepressant-like effect was also evaluated. Using the tail suspension test, we showed that IpHE (0.1-10 mg/kg, orally) exerts an antidepressant-like effect similar to that of ketamine (1 mg/kg, intraperitoneally). The antidepressant-like effect depends on the N-methyl-D-aspartate receptor and L-arginine-nitric oxide pathway modulation as we observed a combinatory effect using subeffective doses of IpHE (0.01 mg/kg, orally) and ketamine (0.1 mg/kg, intraperitoneally) or MK-801 (0.001 mg/kg, intraperitoneally). Also, pretreatment of mice with L-arginine (750 mg/kg, intraperitoneally) abolished the antidepressant-like effect of IpHE. This effect coincides with the neuroprotective effect, given that glutamate toxicity (10 mmol/l) did not decrease cell viability in hippocampal or cortical slices from IpHE-treated mice. The chromatographic profile of IpHE showed the presence of the methylxanthines caffeine and theobromine. Administration of methylxanthines (2.7 µg/kg) in mice produced an antidepressant-like effect, but not neuroprotection. We suggest that methylxanthines are at least in part responsible for the antidepressant-like effect of IpHE; further studies are necessary to determine the biological compounds responsible for the neuroprotective effect.


Assuntos
Antidepressivos/farmacologia , Ilex paraguariensis/química , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Animais , Antidepressivos/administração & dosagem , Antidepressivos/isolamento & purificação , Arginina/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Maleato de Dizocilpina/farmacologia , Relação Dose-Resposta a Droga , Elevação dos Membros Posteriores , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Camundongos , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/isolamento & purificação , Óxido Nítrico/metabolismo , Extratos Vegetais/administração & dosagem , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais/efeitos dos fármacos , América do Sul
12.
Pharmacol Biochem Behav ; 122: 253-60, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24769309

RESUMO

Atorvastatin is a statin largely used in the treatment of hypercholesterolemia and recently revealed as a neuroprotective agent. The antidepressant-like effect of acute atorvastatin treatment in mice has been previously demonstrated by our laboratory. The purpose of this study was to explore the contribution of the serotonergic system in the antidepressant-like effect of atorvastatin in mice. Data demonstrate that the serotonin (5-HT) depleting agent p-chlorophenylalanine methyl ester (PCPA, 100 mg/kg, i.p.) completely abolished atorvastatin (0.1 mg/kg, p.o.) antidepressant-like effect. Besides atorvastatin, fluoxetine (10 mg/kg, p.o.), a serotonin selective reuptake inhibitor (SSRI) was able to exert an antidepressant-like effect, but any of them changed 5-HT content in the hippocampus or frontal cortex. The 5H-T1A (WAY100635, 0.1 mg/kg, s.c) or the 5-HT2A/2C (ketanserin, 5 mg/kg, s.c.) receptor antagonists prevented atorvastatin antidepressant-like effect. In addition, a combinatory antidepressant-like effect was observed when mice received the co-administration of sub-effective doses of atorvastatin (0.01 mg/kg, p.o.) and the SSRI fluoxetine (5 mg/kg, p.o.), paroxetine (0.1 mg/kg, p.o.) or sertraline (1 mg/kg, p.o.). Taken together, these results indicate that the antidepressant-like effect of atorvastatin depends on the serotonergic system modulation.


Assuntos
Antidepressivos/uso terapêutico , Encéfalo/metabolismo , Depressão/tratamento farmacológico , Depressão/metabolismo , Ácidos Heptanoicos/uso terapêutico , Pirróis/uso terapêutico , Serotonina/metabolismo , Animais , Antidepressivos/farmacologia , Atorvastatina , Encéfalo/efeitos dos fármacos , Ácidos Heptanoicos/farmacologia , Masculino , Camundongos , Pirróis/farmacologia , Receptores de Serotonina/metabolismo , Antagonistas da Serotonina/farmacologia , Resultado do Tratamento
13.
Carbohydr Polym ; 99: 474-82, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24274533

RESUMO

The poor solubility of drugs remains one of the most challenging aspects of formulation development. Aiming at improving the biopharmaceutical limitations of the calcium channel blocker nimodipine, the development of solid dispersions is proposed herein. Three different proportions of nimodipine:HPMC were tested and all of them generated amorphous solid dispersions. Improvements of up 318% in the solubility and a 4-fold increase in the dissolution rate of nimodipine were achieved. Stability studies conducted over 90 days in a desiccator indicated that the initial characteristic of the formulations were maintained. However, at 40 °C/75% RH recrystallization was observed for solid dispersions with 70 and 80% of HPMC, whilst the formulation composed of 90% of the carrier remained amorphous. The increase in the stability observed when the HPMC concentration was increased from 70 to 90% in the solid dispersions was attributed to the dilution mechanism.


Assuntos
Anti-Hipertensivos/química , Metilcelulose/análogos & derivados , Nimodipina/química , Varredura Diferencial de Calorimetria , Cromatografia Líquida de Alta Pressão , Estabilidade de Medicamentos , Derivados da Hipromelose , Metilcelulose/química , Pós , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Água
14.
Talanta ; 117: 189-95, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24209329

RESUMO

Venlafaxine hydrochloride (VEN) is an antidepressant drug widely used for the treatment of depression. The purpose of this study was to carry out the preparation and solid state characterization of the pure polymorphs (Forms 1 and 2) and the polymorphic identification and quantification of four commercially-available VEN raw materials. These two polymorphic forms were obtained from different crystallization methods and characterized by X-ray Powder Diffraction (XRPD), Diffuse Reflectance Infrared Fourier Transform (DRIFT), Raman Spectroscopy (RS), liquid and solid state Nuclear Magnetic Resonance (NMR and ssNMR) spectroscopies, Differential Scanning Calorimetry (DSC), and Scanning Electron Microscopy (SEM) techniques. The main differences were observed by DSC and XRPD and the latter was chosen as the standard technique for the identification and quantification studies in combination with the Rietveld method for the commercial raw materials (VEN1-VEN4) acquired from different manufacturers. Additionally Form 1 and Form 2 can be clearly distinguished from their (13)C ssNMR spectra. Through the analysis, it was possible to conclude that VEN1 and VEN2 were composed only of Form 1, while VEN3 and VEN4 were a mixture of Forms 1 and 2. Additionally, the Rietveld refinement was successfully applied to quantify the polymorphic ratio for VEN3 and VEN4.


Assuntos
Antidepressivos/análise , Cicloexanóis/análise , Antidepressivos/síntese química , Varredura Diferencial de Calorimetria , Cicloexanóis/síntese química , Indústria Farmacêutica , Humanos , Espectroscopia de Ressonância Magnética , Espalhamento a Baixo Ângulo , Cloridrato de Venlafaxina , Difração de Raios X
15.
J Pharm Biomed Anal ; 78-79: 105-11, 2013 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-23474809

RESUMO

Terbinafine hydrochloride (TH), a poorly water soluble antifungal agent, was characterized by solid state techniques including differential scanning calorimetry, thermogravimetry, X-ray powder diffraction, optical and electron microscopies, Fourier transform infrared, Raman and solid-state nuclear magnetic resonance spectroscopies and intrinsic dissolution rate (IDR). A colorless single crystal of TH was grown from an ethanol:water solution and its crystalline structure was determined through X-ray single crystal diffraction. Also, a new crystal habit of TH was obtained through the slow solvent evaporation technique revealing a needle-like shape. A comparison between the IDR results for the TH raw material and TH needle-like crystal revealed lower values for the new crystal habit, which can be attributed to the preferential orientation of the crystals in the compressed disks.


Assuntos
Naftalenos/química , Varredura Diferencial de Calorimetria , Microscopia Eletrônica de Varredura , Difração de Pó , Solubilidade , Análise Espectral , Terbinafina
16.
J Chromatogr Sci ; 51(6): 511-6, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23118209

RESUMO

The determination of nimodipine in the presence of its degradation products, formed through photolysis, acidic and alkaline hydrolysis, and the drug degradation kinetics under these conditions, was investigated through a validated liquid chromatography method. Separation was achieved using a Phenomenex Luna C18 column (250 × 4.6 mm i.d., 5 µm) with a mobile phase consisting of acetonitrile-methanol-water (55:11:34, v/v/v), at 0.5 mL/min and with ultraviolet detection at 235 nm. The method was considered to be specific, accurate, precise, robust and linear over the concentration range of 5.0 to 35.0 µg/mL. The drug followed a first-order reaction for both hydrolysis and photolysis in methanol, and zero-order for photolysis in acetonitrile and water. The calculated activation energies were 10.899 and 23.442 kcal/mol for alkaline and acidic hydrolysis, respectively. No degradation was observed under thermal and oxidative stress conditions.


Assuntos
Cromatografia Líquida/métodos , Nimodipina/análise , Análise de Variância , Estabilidade de Medicamentos , Ácido Clorídrico , Hidrólise , Cinética , Modelos Lineares , Nimodipina/química , Fotólise , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Hidróxido de Sódio , Temperatura
17.
J AOAC Int ; 94(6): 1785-90, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22320085

RESUMO

An HPLC method was developed and validated for the simultaneous determination of buclizine, tryptophan, pyridoxine, and cyanocobalamin in pharmaceutical formulations. The chromatographic separation was carried out on an RP-C18 column using a mobile phase gradient of methanol, 0.015 M phosphate buffer (pH 3.0), and 0.03 M phosphoric acid at a flow rate of 1.0 mL/min and UV detection at 230, 280, and 360 nm, respectively, for buclizine, tryptophan, pyridoxine, and cyanocobalamin. The method validation yielded good results with respect to linearity (r>0.999), specificity, precision, accuracy, and robustness. The RSD values for intraday and interday precision were below 1.82 and 0.63%, respectively, and recoveries ranged from 98.11 to 101.95%. The method was successfully applied for the QC analysis of buclizine, tryptophan, pyridoxine, and cyanocobalamin in tablets and oral suspension.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Piperazinas/análise , Triptofano/análise , Vitamina B 12/análise , Vitamina B 6/análise , Sensibilidade e Especificidade , Suspensões/química , Comprimidos/química
18.
Braz. j. pharm. sci ; 46(2): 281-287, Apr.-June 2010. ilus, tab
Artigo em Inglês | LILACS | ID: lil-564895

RESUMO

Deflazacort (DFZ) is a glucocorticoid used as an anti-inflammatory and immunosuppressant drug. No official methods are available for DFZ determination in pharmaceutical formulations. The objective of this study was to develop, validate and compare spectrophotometric (UV and colorimetric) and high-performance liquid chromatography (HPLC) methods, for the quantitative determination of DFZ in tablets and oral suspension. For the UV method, ethanol was used as the solvent, with detection at 244 nm. The colorimetric method was based on the redox reaction with blue tetrazolium in alkaline medium, with detection at 524 nm. The method by HPLC was carried out using a C18 column, mobile phase consisting of acetonitrile:water (80:20, v/v) with a flow rate of 1.0 mL min-1 and detection at 244 nm. The methods proved linear (r > 0.999), precise (RSD < 5 percent) and accurate (recovery > 97 percent). Statistical analysis of the results indicated that the UV and HPLC methods were statistically equivalent, while the values obtained for the colorimetric method differed significantly from the other methods.


O deflazacorte (DFZ) é um fármaco glicocorticóide usado como antiinflamatório e imunossupressor. Métodos oficiais não estão disponíveis para a determinação de DFZ em formas farmacêuticas. Este estudo teve como objetivo desenvolver, validar e comparar métodos por espectrofotometria (UV e colorimetria) e cromatografia líquida de alta eficiência (CLAE), na determinação quantitativa de DFZ em comprimidos e suspensão oral. O método por UV utilizou etanol como solvente, com detecção em 244 nm. O método colorimétrico foi baseado na reação de redução com azul de tetrazólio em meio alcalino, com detecção em 524 nm. O método por CLAE utilizou coluna C18; fase móvel constituída de acetonitrila:água (80:20, v/v), com fluxo de 1,0 mL min-1 e detecção em 244 nm. Os métodos foram lineares (r > 0,999); precisos (RSD < 5 por cento), e exatos (recuperação > 97 por cento). As análises estatísticas dos resultados obtidos indicaram que os métodos por UV e por CLAE foram estatisticamente equivalentes, enquanto os valores obtidos para o método colorimétrico diferiram significativamente dos demais métodos.


Assuntos
Cromatografia Líquida de Alta Pressão , Corticosteroides/química , Espectrofotometria Ultravioleta , Estudos de Avaliação como Assunto
19.
Int J Pharm ; 378(1-2): 146-8, 2009 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-19501150

RESUMO

This work describes the pharmacokinetics of a novel carbamazepine nanoemulsion. The plasma concentration profiles were determined in beagle dogs after i.v. bolus administration of a 5 mg/kg carbamazepine nanoemulsion and compared to the corresponding carbamazepine/hydroxypropyl-beta-cyclodextrin complex solution. Both formulations showed similar pharmacokinetic profiles and could represent valuable formulations in case of emergencies, when a rapid action in the central nervous system is desirable.


Assuntos
Anticonvulsivantes/farmacocinética , Carbamazepina/farmacocinética , Excipientes/química , beta-Ciclodextrinas/química , 2-Hidroxipropil-beta-Ciclodextrina , Animais , Anticonvulsivantes/administração & dosagem , Carbamazepina/administração & dosagem , Estudos Cross-Over , Cães , Emulsões , Feminino , Injeções Intravenosas , Nanopartículas , Distribuição Aleatória
20.
Drug Dev Ind Pharm ; 34(1): 53-8, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18214755

RESUMO

Carbamazepine (CBZ) is available on the pharmaceutical market as tablets, capsules, and oral suspensions, but not as a parenteral formulation for clinical use. Parenteral emulsions are a good alternative to poorly water-soluble drugs such as CBZ. In this way, four different emulsions containing 3 mg/mL of CBZ were developed, but during a period of storage, drug crystal precipitates appeared. To investigate this phenomenon, differential scanning calorimetry, infrared spectroscopy, and light microscopy were employed. The results suggested a polymorphic transition from beta form to dehydrate form, resulting in drug precipitation, although the emulsions themselves remained stable for at least three months.


Assuntos
Anticonvulsivantes/química , Carbamazepina/química , Emulsões/química , Nanopartículas/química , Anticonvulsivantes/administração & dosagem , Varredura Diferencial de Calorimetria , Carbamazepina/administração & dosagem , Precipitação Química , Química Farmacêutica , Estabilidade de Medicamentos , Emulsificantes/química , Tamanho da Partícula , Espectrofotometria Infravermelho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA